
Methodology

Design for Change

Design for Testability

Design by Contract

Multiple Facets of 
Software Design

1/28/2004 - v108

Structured Programming

Object Oriented Design

Characteristics

Abstraction

Encapsulation

Inheritance

Composition

Principles

Open-Closed Principle

Liskov Substitution Principle

Dependancy Inversion Principle

Interface Segregation Principle

Aspect Oriented Design
AspectJ

AspectC++

Design for Maintainability Breaking into modules
Module dependancies

Identification of high and low level modules

Design for Portability

Design Patterns

Design for Debugability

Log outputs

Contents of good log messages

Time stamp

Subsytem or module name

Message type

Severity

Feature for good logging utility

Ability to log at multiple locations

Ability to logging on/off With minimal performance overhead

XML logs Show the program flow

Small functions

Single return from functions

Aspects to inspect input/output of functions

Test First Programming
From XP

Building test functions in class interface

Unit Test Frameworks
CppUnit

JUnit

Visibility : for Software under test

Ability to observe 
Output

Side effects

Internal state

Diagnostics Techniques for Identifying bugs as they occur

Monitors Log outputs

Links
� Design for Testability by Bret Petticord

History
From Eiffel language

Bertrand Meyer

Assertions
Checking preconditions

Checking post conditions

Checking invariants

COM and other forms of Interface based 
programming

Multiple Facets of Design.mmp - 1/28/2004 - nitinbhide@vsnl.com - Nitin Bhide


