Nitin’s Thumb Rules for
Common Sense
Software Development

By Nitin Bhide

(nitinbhide@yahoo.com)

Jan 2004




The Thumb Rules

m Observe and Understand your
customer

Make it Goof Proof

First, Do no Harm

Add Great Extras
Beware of Feature Creep




The Thumb Rules ...

m One Click is Simple than Two.
m Keep it Simple (Simple as Frisbee)

m Have a Backstage Pass

m Common Practice is NOT ALWAYS
Common Sense

m The Passion Factor - I will not Ship
Shit




Observe and Understand
your customer

m Find out who is your customer.

m If you are developing a product, End
User is your customer

m If you are developing a library,
Application Developer is your customer




Observe and Understand
your customer

m Understand the your customers
needs (and not just expectations)

m Customer may have unreasonable
expectations but his needs are real.

m Needs and expectations can be totally
different.

m Once you understand the need, you can
give satisfactory solutions




Observe and Understand
your customer

m Observe how customer is using an
existing application
m What are the current pain areas ?

e [s Performance a problem ?

e Is user interface /API a problem (cryptic,
confusing, too many alternatives)?

e Is he trying to fit rectangular peg in round
hole ?




Make it Goof Proof

m Remember that your Customer is Human.
m Hence he is bound to make mistakes at times.

s If you make sure that mistakes are caught
early, you are making him productive.

m Don’t violate commonly accepted
conventions.

m E.g.. Don't put File Button at the end of Menu
bar.




Examples of 'Make it Goof
Proof’

m Application Developers
e Undo,
e Error messages/recovery,
e AutoSave features

m Library Developers :
e Use assertions
e Give attention to error handling

e Provide logging and support for easier
debugging




First, Do No Harm

m Doctors principle applied to Software

m Take the pain/struggle/frustration
out of your product, you will WIN
over the customer.

m Ensure that customer doesn't loose
his data under any circumstances.




Examples of
‘First, Do No Harm’

m Clearly separate Inputs and Outputs for
functions.

m Avoid using same variable for input and
output

m If using same variable, do not change it
unless your function is successful.

m In C++, Use ‘const functions’ and ‘const
variables’.




Add Great Extras

m At times, 'Adding a Great Extra’ may
make or break a product.

m The Extra can be someone else’s
product added to your mix.

m The Extra can be something you have
developed.




Examples of ‘Great Extras’

m Visual C++ is popular not because the
Compiler is best, but because IDE easier
to use.

m Support for multiple CAD file formats for
CAD Application.

m Add Support for writing Addins to the
application

m Giving a Installer/Uninstaller rather than
‘installation instructions sheet’.




Examples of ‘Great Extras’

m Support to multiple compilers to your library
m Using a third party library (Geometry Kernel,
Standard Template Library etc).

m E.g. 'This library is available on ACIS or Parasolid’ -
Great. Customer’s efforts/cost/development time are
reduced.

m Adding a Debugging support.

m Making Sources available (for free or for fee)

m Source availability is a 'Great Extra’ for all Open Source
software




Beware of Feature Creep

m Adding unnecessary bells & whistles
complicates software

m It will make it difficult to design and
implement.

m If your users are struggling with manual
trying to find how to do a common task,
something is wrong with the product.

m Simplicity is Essential.




Beware of Feature Creep

m Challenge every feature.

m For every feature, ask ‘why?,
why?, why?’

m Chuck out preconceptions of ‘how
complex’ something needs to be ?




Beware of Feature Creep

m Spend more time driving your own
product.

m Try ‘driving’ them as if you are trying them
for the first time.

s Understand which features are ‘necessary’
and which are not

m You are having problems using the software
definitely your users will have problems

m If you don't like Unit Testing your product,
mostly likely your users won't like to test it
either




One click is Simple Than
Two

m Make your product Faster and Simpler to
use then it has a better chance of
SUCCeSS.

m Don't let Cloud of features Blur the most
common use of your product.

m Target for average common user and
have advanced features available for
experts.




One click is Simple Than
Two

m Strive for SIMPLICITY

m In Architecture Design,
m In Coding

= In API Design

m In User Interface

= In Documentation




Examples — One Click is
Simple than Two

m Amazon.com - Its simple one click
ordering process is a major of factor to
make is popular

m Pop Up /Context Sensitive Menu — Most
needed tasks are available on single click
on ‘third button’.

m Drag/Drop File Open




Examples — One Click is
Simpler than Two

m Visual Installers rather than install
scripts/documents.

m InstallShield and Wise created a Industry
around a simple user need.

m Give a simple basic API and separately
give advanced API.

m Maintain the consistency of API.




Have a Backstage Pass

m Give your customer a view of what
is happening behind the scene.

m This gives them a sense of security.

m Also provides them a view of what
will work and what won’t work.




Examples '‘Have a
Backstage Pass’

m Facility to provide detailed logs from the
application or library

m Details of implemented/used algorithms
m Document format of the support files

m A Progress Bar is a classic example of ‘a
backstage pass’




Common Practice is NOT
ALWAYS Common Sense

m Yesterdays Common Sense typically
becomes today’s Common Practice

m Common Practices doesn't necessarily
mean its Common Sense in Today’s
circumstances and context

m Following Common Practice WITHOUT
Understanding the Context is a recipe for
disaster




Classic Example of Common
Practice and Common Sense

m For Portable code, Don't use
templates or STL'

m Common Sense 5 years back

s Common Practice Today (not a
Common Sense Any More)




Classic Example of Common
Practice and Common Sense

m Circumstances 5 years back.

m C++ Compiler on most of Unix platforms did
not support templates or STL

m Templates and STL are NOT part of C++
standard.

m Inconsistencies between different
implementations of templates and STL

m Hence, Don’t Use STL is a Common
Sense 5 years back.




Classic Example of Common
Practice and Common Sense

m Circumstances Today

m Templates and STL are Part of C++ Standard

s Almost all compilers support templates and
STL

m Still few inconsistencies in template
implementation on different platforms

m Todays Common Sense - Use STL and
Carefully use Templates




Other Examples of
‘Common Practices’

m "Starting a new Project ?”

m "Use COM”

m "Use ActiveX”

m "Use Java”

m "Use XML"

m "Use Web Services”

m "Use RUP”

m "Use UML"




The Passion Factor

m All the above Thumb rules are
useless if there is NO PASSION.

m Passion Fuels the Fire

m 'Passion for work’, ‘Passion for
Quality” will make sure that all
other Thumb Rules happen.




The Passion Factor

m For A Passionate Team, Nothing is
Impossible.

m Passionate Teams need ‘a tangible goal’.
Something to shoot for and Be Proud Of.

m Passionate Teams need ‘Recognition’ of
the efforts to sustain and fuel the
‘passion’




The Passion Factor

m Only a Passionate Leader can
Nurture and Sustain a Passionate
Team




References

m Art of Innovation — Tom Kelly




